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A comparison of numerical predictions and 
experimental measurements of the internal 
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A deep-water long-crested breaking wave is generated from a time-stepping numerical 
model, then replicated in a wave flume. The numerical model is based on the boundary 
integral method and measurements of the internal kinematics are made during the 
breaking process with Particle Image Velocimetry (PIV). Velocity measurements are 
obtained throughout the wave crest, including the plunging spout. After a small 
shift of the numerical data to match the surface profiles, the predicted and measured 
kinematics are found to be in good agreement, within the limits of experimental error. 

1. Introduction 
Breaking waves represent some of the most extreme events in the marine envi- 

ronment. Their internal kinematics have implications for the safety of ships, the 
design of oil platforms and the processes of coastal erosion. Many studies on such 
waves have been performed, particularly those breaking on beaches, which have been 
reviewed by Peregrine (1983). In deep water, recent research effort by Kjeldsen (1990) 
and Sand et al. (1990) has been applied to the assessment of the probability of freak 
waves occurring, as well as by Kjeldsen (1980) to the mechanics of the breaking. 

The breaking process is difficult to measure and to model. Nevertheless, good 
quantitative descriptions of the breaking process have been reported by Basco (1985), 
Miller (1976) and Tallent, Yamashita & Tsuchiya (1990). Recently, measurements 
have been made of the crest kinematics just before breaking by Griffiths, Easson 
& Greated (1992), of the aeration induced by the breaking process by Lamarre & 
Melville (1991), and of the turbulence left afterwards by Nakagawa (1991). 

Numerical computations of the evolution of overturning waves were first performed 
by Longuet-Higgins & Cokelet (1976). Since then refinements have been made, and 
a number of robust, fully nonlinear time-stepping numerical models have become 
available for two-dimensional water waves (Dold & Peregrine 1986; Grilli & Svendsen 
1990; She, Greated & Easson 1992). However, they can be difficult to apply to 
practical situations and in their application are limited to the early stages of breaking. 
A good review of numerical computations is given by Peregrine (1990). 

Experimental studies have been undertaken for comparison with numerical pre- 
dictions, most notably by Dommermuth et al. (1988). Here, good agreement was 
obtained between point measurements of the internal kinematics and the prediction 
of a numerical model, for a deep-water breaking wave. However, the velocity measure- 
ments were not made in the breaking crest, but a few metres closer to the wavemaker 
and mainly below the still-water level. It was found that the nonlinear computations 
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predict that the wave plunges closer to the wavemaker and at an earlier time than is 
observed, with deviations in position and time of A x  w 0.15 m and At = 0.25 s. Com- 
parative studies such as this are rare, perhaps because of the difficulties encountered 
in trying to arrange the same experimental and numerical conditions. 

In the present study, a particular deep-water, plunging, breaking wave was cho- 
sen and investigated in great detail. The wave selected was arbitrary, but it was 
considered more important that similar waves could be generated numerically and 
experimentally, than that the chosen wave should have any particular parameters, 
other than being extreme. The study concentrates on extracting as much information 
as possible about the kinematics of this particular wave using the Particle Image 
Velocimetry (PIV) measurement technique, and on the careful comparison between 
the measurements and the numerical predictions. In making velocity measurements 
throughout the whole of the breaking crest, the study goes significantly beyond that 
of Dommermuth et al. (1988). The design of the wave flume built for the project 
allowed the same wave to be followed through all phases of its evolution, from its 
initial steepening, until after breaking. The work consolidates and expands upon 
earlier work of the author (Skyner & Greated 1992; Skyner, Gray & Greated 1990). 

The numerical model used in the study was a time-stepping program written at 
the University of Bristol by Dold & Peregrine (1986), based on the boundary integral 
method with assumptions of inviscid, incompressible and irrotational flow. In the 
model, computational points are positioned along the surface boundary, each with a 
coordinate and velocity potential. The computational points are given starting values 
and are allowed to move. Cauchy’s integral theorem is used to solve Laplace’s equation 
for the time derivatives of the surface motion. The surface points are propagated until 
a specified time, or until the calculations become unstable if the wave is overturning. 
An important feature of the numerical scheme is the use of higher-order derivatives 
in the time-stepping, resulting in a computationally efficient scheme. It is implicit in 
the formulation that the end boundary conditions are periodic. 

PIV (Adrian 1984; Pickering & Halliwell 1984) is a reliable measurement tech- 
nique which can yield very accurate, simultaneous velocity measurements over a wide 
area of a flow field. In PIV, multiple images of small tracer particles are recorded 
onto film which is subsequently analysed to determine the particle motions and 
hence the velocity field. Since the early experiments by Barker & Fourney (1977), 
Grousson & Mallick (1977) and Simpkins & Dudderar (1978), the PIV method has 
received much research attention, aided by the increased availability of high-powered 
lasers to illuminate the flow and the advance in the speed of computers, making 
automated analysis of the photographs possible. A good review of the technique 
has been given by Gray (1992). While the principles of the method are well estab- 
lished in general, each application requires particular implementations and practices 
(Greated, Skyner & Bruce). For the study of the kinematics of water waves, PIV 
has only recently been developed (Gray 1989), and is now at the stage where it can 
be used to yield reliable velocity measurements, as discussed by Quinn et al. (1992), 
Skyner & Greated (1992) and Sutherland, Greated & Easson (1991). 

2. Generation of the extreme wave 
In the numerical model, starting values for the computational points along the 

surface are required, whereas in the wave flume, the motion of the wave paddle is 
specified as a function of time. In order to ensure that similar waves are generated in 
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the model and flume, it is necessary to obtain one set of boundary conditions from 
the other, and it was found to be easier to specify the numerical conditions first. 

2.1. Generation of the extreme wave in the numerical model 
The approach used to generate the breaking wave in the time-stepping numerical 
model was similar to that adopted in the laboratory to produce an extreme wave 
for demonstration purposes: linear theory was used to force an extreme event, then 
the parameters of the generation were modified slowly until a suitable plunging wave 
resulted. 

Each attempt at producing a numerical breaker followed the same pattern. First, 
parameters for a chosen spectrum were selected. Next the surface profile and velocity 
potential were calculated by linear superposition using using equation (2. 1), with w, 
and k,  related by the linear dispersion relationship. These quantities were appro- 
priately scaled for the model, and care was taken to ensure that the wave packets 
tailed off smoothly before the periodic boundaries. The distribution of computational 
points was also forced to be smooth across the boundary. The numerical wave group 
was then allowed to propagate until it ‘broke’ or passed the point where breaking 
was expected. Depending on the result from the run, the spectral parameters were 
altered until a plunging breaker was produced which just avoided breaking at the 
penultimate crest. The main parameter to be modified was the overall size of the 
spectrum. 

In order to limit the number of parameters the spectral shape was selected such 
that the components had amplitudes given by 

where 
27cn 
102.4 * 

w, = ~ 

The phases CI, were chosen so that, if linear theory applied, the components would 
have some common phase @ = 0 at x = 0, t = 0. 

The spectral form given in (2.2) was selected as covering the ‘flat top’ spectral 
shape often used in the generation of freak waves by, for example, Dommermuth et 
al. (1988) and Greenhow et al. (1982), while allowing the spectrum to tail off smoothly 
at the extremes. Initial parameters were chosen with a knowledge of the dimensions 
and capabilities of the wave flume. 

With 200 computational points it was possible to try another iteration every few 
hours, and after less than 30 iterations a suitable breaker was arrived at. The chosen 
wave was then rerun with twice the number of computational points. The profile of 
the wave as it nears breaking, used to judge its suitability, is plotted in figure 1. 

The spectral shape which yielded this final profile is plotted in figure 2 and the 
spectral parameters noted in table 1. The spectrum shown is somewhat different 
from those naturally occurring in the oceans, where normally the wave component 
amplitude tails off with frequency above the central value. When the wave packet 
reaches the wave flume, its spectral form has been modified by nonlinear action to 
one which is more usual in shape, as can be seen by looking forward to figure 7. For 
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FIGURE 1. Final surface profile as the numerical wave approaches breaking. 
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FIGURE 2. Wave amplitude spectrum found to produce a suitable numerical breaker. 

Parameter Value 

a0 0.75498 mm 
a1 1.4161 mm s rad-’ 
0 0  2.93230 rad s-l 
01 4.53174 rad 

S 16 

TABLE 1. Parameters selected for the spectrum used to calculate 
the starting conditions for the numerical model 

the purpose of non-dimensionalizing the results, the mean frequency of the spectrum 
has been calculated as fm = 0.818 Hz, with corresponding wavelength 1, = 2.26 m. 
In the work of Dommermuth et al. (1988) the central frequency of the spectrum was 
0.88 Hz. 

The starting conditions for the numerical model calculated from this spectrum are 
plotted, at tank scale, in figure 3 along with the distribution function used to obtain 
the coordinates of the computational points. The distribution function peaks near 
the place where breaking is expected, in order that there are enough points where the 
surface curvature is the highest and the greatest accuracy is required. Note that the 
horizontal extent of the starting conditions is about five times longer than the actual 
wave flume, which starts at x’ = -3.8 m in this figure. 

2.2. Strategy for matching the waves 
From the data produced by the numerical model it is possible to extract any physical 
information about the wave packet as it propagates from the starting conditions until 
the program halts at the breaking point. While it would be possible to calculate 
a wave time-series to be produced at the wavemaker, this is not practical as the 
travelling wave at this position is distorted by the evanescent effects of the wave 
paddle (Hyun 1976). A better strategy is to obtain a wave height time-series from 
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FIGURE 3. Starting profile and velocity potential calculated by linear theory 
7.3 s before expected linear focus. 

the model and to attempt to reproduce this in the flume far enough in front of the 
wavemaker to avoid transient effects. 

The position for the wave gauge in the numerical wave tank was selected to be at 
x = -1.6 m, which is about 2 m before the final breaking position. By interpolating 
between the records at the neighbouring computational points a wave height time- 
series was extracted from the numerical data. The equivalent position in the physical 
wave flume was selected to be at x' = 2.2 m, from considerations of the part of 
the flume where PIV measurements of the breaking kinematics would be easiest to 
make. 

The criterion for success in the replication is that the wave height time-series should 
match well at the selected wave gauge position. The approach adopted was to form 
the amplitude and phase spectrum of the numerical time-series and to attempt to 
reproduce this in the tank. Because the waves are markedly nonlinear at the selected 
position, the linear wavemaker transfer function cannot be expected to produce the 
required record directly, and an iterative scheme was attempted. 

In forming the spectrum of the numerical time-series a difficulty is encountered: 
only part of the time-series exists, from the chosen start until wave breaking. The 
time-series was extended outside this range by calculation with linear theory from 
the starting spectrum. The composite time-series obtained in this way is shown in 
figure 4. The linear focus was arranged to be at 12.071 s on this scale. 

2.3. Generation of the extreme wave in the wave flume 
Figure 5 shows the configuration of the wave flume for the experimental replication 
of the numerical wave, including the position of the wave gauge. Also shown are the 
actual wave profiles obtained in the experiments and the physical coordinate system, 
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FIGURE 5 .  Configuration of the wave flume for the measurement of breaking waves. 

which is related to the numerical coordinate system by x’ = x + 3.8 m. Waves are 
generated by a hinged-paddle absorbing wavemaker described by Salter (1982), travel 
from left to right, and are absorbed by a mesh beach at the end of the flume. The 
illumination system which provides the pulsed light sheet for the PIV photography 
is mounted on rails and can be moved anywhere beneath the two first measurement 
bays. The flume is 9.770 m long and 0.400 m wide. The normal water depth is 
0.750 m; x is measured along the flume from the wavemaker, and z upwards from 
the water surface. 

The parameters involved in attempting to reproduce the required wave spectrum 
are the frequency limits of the wavemaker drive spectrum, f l  and f2, and the position 
of the wave gauge. In addition there are the details of the iterative scheme and the 
number of iterations involved. 

The initial wavemaker drive spectrum was calculated from the linear transfer func- 
tion and tried in the flume. The wave gauge was sampled as the wave group passed. 
The later portion of the wave record, after the breaking, contains reflections and 
spurious high frequencies from the wavemaker’s final large motion which are difficult 
to disentangle in a nonlinear wave field. Therefore, the experimental wave record was 
patched with the linearly expected time-series used to extend the numerical record. 
In this way, the same operations were performed on both the numerical and exper- 
imental wave time-series before transformation. The required and obtained spectra 
were then compared. If the match was judged inadequate, then each component in 
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FIGURE 6. Iterations towards the required wave amplitude spectrum. 

the drive spectrum was modified in both amplitude and phase by multiplication by 
the complex quantity R(w) given by 

This modifier has the effect of stepping halfway to that required in both amplitude 
and phase and was used because the simple ratio was found to overshoot. 

Iterations were continued until the obtained spectrum was judged to match that 
required sufficiently closely. In the iterations, the lower frequencies were found to 
converge first, which is expected because the higher frequencies are partially composed 
of their harmonics. This can be seen in figure 6 which shows the convergence of the 
experimental wave spectrum to that required over six iterations. 

Contained in figure 7 are the amplitude and phase of the experimental wave 
spectrum finally achieved, compared to the required spectrum. The spectra can be 
seen to have been forced to be very similar within the frequency range for which 
waves were generated. Below the lower frequency limit, there is also good agreement, 
both in amplitude and phase. This portion of the spectrum corresponds to the bound 
long wave, and it is important that the spectra match in this region. 

The actual wave amplitude time-series is plotted in figure 8 and is compared to the 
time-series extracted from the numerical model. The match is generally good in the 
main part of the wave group. However, there is a tendency for the largest crests to be 
not well replicated. It should be noted that the portion after breaking is not relevant 
as it has no influence on the breaking event. 

The repeatability of the wave spectrum was excellent. However, it can be expected 
that the exact form of the breaking wave will be very sensitive to small changes in 
the starting conditions of its evolution. Therefore, a series of tests was conducted to 
attempt to discover the effect of changes in the spectrum and other conditions on the 
final breaking form. Changes in the frequency bounds of the generated spectrum, the 
number of iterations in the fitting of the spectrum, the position of the wave gauges 
and their calibration values were amongst those investigated. Of these parameters 
only changes in the higher frequency bound were found to affect the breaking form 
significantly. 
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FIGURE 7 .  Experimental wave spectrum found by iteration compared to the required spectrum. 
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FIGURE 8. Experimental wave amplitude time-series compared to the time-series 

extracted from the numerical model. 

3. Experimental measurements 
Having established a wave group in the flume which match that in the numerical 

model, a sequence of measurements was performed to record the surface profiles and 
internal kinematics at each stage of its evolution. 

The internal kinematics were obtained from PIV photographs of the flow. A 
Hasselblad 500 E L / M  camera was used with an 80 mm lens and 400 ASA TMax 
film. The flow field was seeded with conifer pollen and illuminated with a scanning- 
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FIGURE 9. (a)  Comparison of experimental and numerical surface profiles, from t = 12.000 s to 
t = 12.300 s: - - -, experimental measurements; -, numerical predictions. (b)  As (a) but with shifted 
numerical predictions. 

beam illumination system with light from a 15 W Argon-ion laser. A sequence of 
photographs was recorded consisting of re-runs of the breaking wave each with a 
given trigger time, camera position, illumination interval and shutter period. The 
trigger time was set by the wavemaker-controlling computer, taking account of the 
inherent delay of the shutter opening and half the shutter speed. Full details of the 
PIV experiments can be found in Skyner (1992). 

3.1. Experimental results 
Figure 9(a) contains the experimental and numerical surface profiles in the same 
graph, without any shift of the numerical results. Both sequences cover exactly the 
same time range at the same intervals. It can be seen that while the overall position 
of each phase is in close agreement with the prediction, the form of each phase is 
not. 

While it would be preferable to compare the internal kinematics of the experimental 
results with predictions at the same time and place, the difference in form of such 
paired phases makes this ideal approach pointless. It was decided, for the purpose of 
the later comparison of the internal kinematics, that the numerical sequence should 
be considered as being shifted forward in time by 0.125 s and forward in space by 
0.22 m. These shifts are similar in magnitude and of the same sign as those noted by 
Dommermuth et al. (1988). The shifted numerical surface profiles are plotted along 
with their corresponding experimental profiles in figure 9(b). While the method used 
for replicating the numerical wave in the tank failed to produce an exact match of 
the profiles near breaking, it did produce a short sequence of waves which had very 
similar form numerically and experimentally. 

Close-up PIV measurements were taken of the plunging tip and the internal 
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FIGURE 10. (a) Experimentally measured velocity field, plunging phase. 

(b)  Numerically generated velocity field. 

kinematics obtained are are shown in figure 10(a) in the form of a vector plot. It can 
been seen that velocity measurements are obtained in the crest, even into the plunging 
tip, where the illuminating beam must have passed through two water surfaces. The 
large patch of missing vectors in the middle of the figure is due to a registration mark 
on the glass obscuring the view. 

In figure 10(b), a numerically generated velocity field is plotted for the phase 
matching that shown in the experimental plot, figure 10(a). The similarity is striking 
apart from the missing vectors. 

To highlight the differences between the experimentally measured and numerically 
generated vector fields, the data were subtracted. Figure 11 shows the difference 
between figure lO(a) and figure 10(b). This time the numerical data have been shifted 
sideways by 0.24 m and upwards by 0.005 m. Note that the velocity vectors are 
plotted 10 times bigger than in the plots of the raw data. The difference between 
these shifts and those used earlier is similar to the spatial repeatability, i.e. around 
0.020 m. 

The overall quality of the match is very high, with many areas containing only very 
small vectors. However, in the region where the water surface has a vertical front 
there are some significant discrepancies, which is to be expected in this area of high 
acceleration if the vector fields are not exactly aligned. 

From the maximum numerical velocity (2.3 m s-') and the mean of the magnitudes 
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FIGURE 11. Difference between experimentally measured velocity field, t = 12.400 s, and numerical 
data, t = 12.275 s:  -, experimental surface; - - -, numerical surface. Note the scale of the velocity 
vectors differs from that of figure 10. 

of the subtracted velocities (0.039 ms-I), the quality of the match can be estimated 
to be 1.7%. The standard deviation of the velocity magnitudes corresponds to 1.2%, 
the mean of the v, components to 0.2% and the mean of the u, components to 0.5%. 
There is no apparent systematic trend in the data and it is not clear which is the most 
appropriate statistic for judging the match. 

In order to gauge repeatability and experimental noise, two experimental vector 
fields for this phase of the wave were subtracted. One of the flow fields was shifted 
by 0.020 m before the subtraction so that the surface profiles would match. The 
match appears slightly better than that between experiment and prediction, with no 
systematic trends near the front face of the wave. Applying the same calculations to 
the statistics, the mean value of the velocity magnitudes was found to be 1.1% of the 
maximum velocity, the mean of v, to be 0.8% and the mean of u, to be 0.4%. 

In figure 12, the numerical data are plotted as velocity contours for the phase of the 
wave which can be compared to the experimental data. The most noticeable feature 
is a region of very high acceleration where the water surface has a vertical front 
(Peregrine, Cokelet & McIver 1980). Not surprisingly, this is the region where the 
greatest difference occurred between the numerical predictions and the experimental 
data plotted in figure 11. 

4. Discussion 
Similar waves were generated numerically and experimentally. The wave spectra 

shown in figure 7 match extremely well both in amplitude and phase, as does the 
resulting wave elevation time-series shown in figure 8. The extent of the agreement of 
the later phases of the wave train and possible explanations of discrepancies between 
the two approaches constitutes the main point of the study. 

Substantial agreement is found in a number of areas. The wave crests immediately 
prior to breaking are at the same positions at any given time (figure 9(a)). For 
comparable wave profiles as the wave starts to plunge, the internal kinematics match 
within the limits of experimental repeatability and measurement error. 

However, there is a notable discrepancy in the detailed form of the crests as the 



62 D. J. Skyner 

0.20 

h 

E v 

8 0.15 
.e Y 1- 

I; 

2 0.10 

$ 

a - 
.- 
E 

0.05 

4.4 4.5 4.6 L 

Horizontal position (m) 
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wave approaches breaking (figure 9(a)). This was also found in the earlier work of 
the author (Skyner et al. 1990), and has been the subject of further investigation. It 
is expected that breaking events are very sensitive to small differences in conditions 
and a number of possible contributing effects are noted: 

(a) The wave spectra did not match perfectly in phase at high frequencies and 
the resulting wave elevation time-series differed slightly at the crests. Attempting to 
improve the match at high frequencies tended to make the wave break much too 
early. 

(b )  The numerical model has periodic boundary conditions which might allow a 
wave to travel into the measurement zone from the opposite direction. However, a 
check revealed that the amplitude of this wave was less than 1% of the breaking 
wave height. In addition, no reflections were observed in the wave flume. 

(c) There could be effective currents in the numerical model. However, calculations 
yielded a value of 4 mms-' of the mean current in the model, which is negligible 
compared to the peak velocities of 2 m s-'. No net current is expected in the flume. 

( d )  Inadequacies of the experiments were considered, including poor calibration of 
the wave gauges, but a sensitivity analysis did not suggest that the discrepancies were 
due to this. 

(e) Other areas of possible doubt include the method of forcing the match between 
the numerical and the experimental spectrum and the calculation of the initial 
conditions for the model. 

5. Conclusions 
For plunging waves of similar shape, numerical predictions for the internal kine- 

matics agreed with experimental measurements within 2%, even in the spout. The 
discrepancy is within the limits of experimental repeatability and measurement error. 

However, the wave crests did not match perfectly on the approach to breaking. 
In the numerical model, the wave plunges earlier and closer to the wavemaker. No 
definitive explanation is offered, although the magnitude of this discrepancy is similar 
to that found in other work. 

It is suggested that use of a numerical wave tank, configured to be as similar as 



Numerical predictions and experimental measurements of a plunging wave 63 

possible to the experimental facility, might reduce the number of differences between 
the predictions and measurements in any future work. 

The author gratefully thanks Professor D. H. Peregrine and his colleagues at 
the School of Mathematics, University of Bristol who developed the time-stepping 
computer program and allowed its use at Edinburgh, Dr C. Gray who initiated the 
PIV studies at Edinburgh, and Professor C. A. Greated for his encouragement of the 
project. 
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